
density functional simulator for block copolymers
version 0.2.2

20 August 2007

Takashi Uneyama

Copyright c© 2005-2007 Takashi Uneyama
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Foundation.

i

Table of Contents

1 Introduction . 1

2 Installation of drops . 3
2.1 To Download the Latest Version of drops . 3
2.2 Install to Microsoft Windows by the Installer 3
2.3 Build and Install from the source . 3
2.4 Build and Install as the RPM package (for Linux) 4
2.5 Compilation with Intel C++ Compiler (icc) 4

3 Invoking drops . 5

4 Tutorial . 7
4.1 Simple Example . 7
4.2 Plot or Visualize Output Data. 7
4.3 Changing Input File . 7
4.4 Notes on Input File. 10

4.4.1 Boolean Variables . 10
4.4.2 Symmetric Matrices . 11

5 Reporting Bugs. 13

6 Input File Format . 15
6.1 Simulation Condition . 15
6.2 Input / Output Files . 17
6.3 Multigrid Solver . 18
6.4 Geometry of Simulation Box . 18
6.5 geometry . 18
6.6 Polymer Blend . 19
6.7 Monomer Species . 19
6.8 Polymer Species . 20
6.9 How to Determine the Adjacency Matricies 20

7 Output File Format . 23
7.1 Psi-Field . 23
7.2 Density Field . 23
7.3 Chemical Potential Field . 24
7.4 Free Energy. 24
7.5 Geometry . 24
7.6 DX Output File . 24

8 References . 25

ii drops

GNU GENERAL PUBLIC LICENSE 27
Preamble . 27
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . 28
How to Apply These Terms to Your New Programs 32

Concept Index . 33

Chapter 1: Introduction 1

1 Introduction

It is widely known that most of the mixture of polymers causes phase separation at low
temperature [Introduction to Polymer Physics, Scaling Concepts in Polymer Physics]. The
block copolymers (polymers which consists on chemically connected subchains of different
monomer species) causes phase separation at low temperature, too, but the its phase sepa-
ration behavior is different from the case of homopolymers (polymers which consists on one
monomer species) [Bates-Fredrickson-1999]. While the blends of homopolymers cause the
phase separation macroscopically, the block copolymers cause the microscopic, chain-length
scale phase separation. The former is called as the ‘macro phase separation’ and the latter
is called as the ‘micro phase separation’.

The micro phase separation takes various morphologies which depends on the structure
of block copolymers or interaction of monomers. The scale of the micro phase separation
structures is about the scale of polymer chains and is typically from 10nm - 1µm.

To study the micro phase separation of block copolymers, various simulation method
is proposed. The particle methods – the coarse-grained molecular dynamics (MD), the
dissipative particle dynamics (DPD) [Groot-Warren-1997,Groot-Madden-1998,Groot-
Madden-Tildesley-1999] – handle each polymer chains explicitly. These are good to
study the dynamics of each chains, but takes too much memory and calculation time for
studying the morphologies. The self consistent field (SCF) theory is widely used to study
the morphologies of block copolymers [Helfand-Wasserman-1976,Helfand-Wasserman-
1978,Helfand-Wasserman-1980, Matsen-Schick-1994,Matsen-Bates-1996,Fraaije-1993,
Drolet-Fredrickson-1999,Fredrickson-Ganesan-Drolet-2002,Statistical Physics of Polymers:
An Introduction]. It calculates the statistical weight of one polymer chain, based on the
mean field theory. The SCF simulations are quite accurate and give very good results
which is consistent with the experimental results quantitatively. While the SCF gives
good results, it requires large memory and calculation time for large systems (for example,
3 dimensional systems or dynamics). The density functional (DF) theory is the theory
which gives the free energy of the system as the functional of the subchain density fields
[Joanny-Leibler-1978,de Gennes-1980,Leibler-1980,Ohta-Kawasaki-1986,Ohta-Kawasaki-
1990, Kawasaki-Ohta-Kohrogui-1988,Nakazawa-Ohta-1993,Kawakatsu-1994,Ohta-Ito-1995,
Bohbot-Raviv-Wang-2000,Uneyama-Doi-2005]. It requires small memory and calculation
time compared with the SCF simulation while its accuracy is less than one of the SCF.
The DF simulation is therefore suitable to survey the morphology of block copolymers
qualitatively or to study the large systems which cannot be handled with the SCF
simulation.

drops is a simulator for block copolymer melts and blends based on the density func-
tional theory [Uneyama-Doi-2005]. It can handle arbitrary block copolymer systems – block

2 drops

copolymers with arbitrary structure and arbitrary blend of them. The required parameter
sets which describes the block copolymers are the same parameter sets as ones required
by the SCF simulation. Thus one can do the simulation by drops just like by using the
simulator based on the SCF. drops enables fast and efficient simulation for the micro phase
separation of the block copolymers. For example, 3D structure formed by block copolymers
such as the onion structure [Koizumi-Hasegawa-Hashimoto-1994,Uneyama-Doi-2005] or mi-
cellar structures (spherical micelles, cylindrical micelles and vesicles) [Disher-Eisenberg-
2002,Choucair-Eisenberg-2003,Uneyama-Doi-2005a] can be simulated by drops.

From version 0.2.0, the dynamic simulation scheme is implemented. Thus drops enables
the dynamics simulations as well as statics simulations for polymer blends, block copolymers
or micellar systems [Uneyama-2007].

Chapter 2: Installation of drops 3

2 Installation of drops

2.1 To Download the Latest Version of drops

The latest version of drops is available at the following URL. Access the web page and
download the latest version via HTTP (FTP is not supported).

http://www.ton.scphys.kyoto-u.ac.jp/~uneyama/drops.html

2.2 Install to Microsoft Windows by the Installer

The installer of drops for Microsoft Windows is now available. You can in-
stall drops just like other Windows applications, by executing the installer
drops-0.2.2-win32-setup.exe. The installer is built by using Inno Setup
(http://www.jrsoftware.org/isinfo.php) and works for most versions of Windows.

2.3 Build and Install from the source

You can build and install drops if the binary package of your system is not available, or if
you want to customize the drops. The source package of drops is using GNU Automake
and GNU Autoconf, therefore you can build and install drops just like usual free software.
Note that drops requires zlib (http://www.zlib.net/), Lua (http://www.lua.org/) and
FFTW3 (http://www.fftw.org/). You have to install them before build drops.

The source package is distributed as the gzipped tar archive file, thus first extract it. To
extract the archive, do

$ zcat drops-0.2.2.tar.gz | tar xvf -

or if you are using GNU tar, do

$ tar zxvf drops-0.2.2.tar.gz

Then the source directory will extracted. Move to the directory drops-0.2.2.

$ cd drops-0.2.2

To build drops, do configure-make-make install just like other free software.

$./configure
$ make
$ su -
make install

Now drops will be installed under /usr/local of your system. If you have an error
messages and the compilation is aborted, some commands or libraries may be missing.
Install the required packages and retry.

If you want to customize or tune drops,

$./configure --help

will help you.

http://www.ton.scphys.kyoto-u.ac.jp/~uneyama/drops.html
http://www.jrsoftware.org/isinfo.php
http://www.zlib.net/
http://www.lua.org/
http://www.fftw.org/

4 drops

2.4 Build and Install as the RPM package (for Linux)

The RPM package for your Linux system can be built from the source RPM (SRPM)
package.Make sure that the headers and libraries and headers of zlib, lua and fftw3 is
already installed to your system. If they are not installed, first you have to install them
(zlib, zlib-devel,lua,lua-devel,fftw3, and fftw3-devel). Of course you need standard
development tools such as C compiler (gcc) or Make (make).

If you are using old system (rpm compatible with RedHat 7.3 or older), use the rpm
command to build it.

rpm --rebuild drops-0.2.2-1.src.rpm

If you are using new system (rpm compatible with RedHat 8.0 or newer), use rpmbuild
instead of rpm.

rpmbuild --rebuild drops-0.2.2-1.src.rpm

Now the binary RPM package for your system is stored in the directory which is shown
in the output message of rpm or rpmbuild. Install it by rpm, for example, if you are using
RedHat Linux or Fedora Core on a PC (or i386 compatible computer), like the following.

rpm -Uvh /usr/src/redhat/RPMS/i386/drops-0.2.2-1.i386.rpm

2.5 Compilation with Intel C++ Compiler (icc)

You may want to compile drops Intel C++ Compiler (icc). icc is mostly compatible GNU C
Compiler (gcc) and thus you can compiler drops with icc easily. But the optimization flag
-ipo will cause troubles when compiling drops. Also note that the flag -ipo is automatically
enabled if you set the optimization flag -fast or if you using icc version 9.0 or later.

There are two way to avoid troubles with the flag -ipo. One way is to add the flag
-ipo_obj. This means, to run configure like

$./configure CC=icc CFLAGS=’-O3 -ipo -ipo_obj’

(Here note that, this method can be used only for icc version 8. If you are using icc
version 9, you should use the following method.) Another way is to use xiar,xild instead
of ar,ld. In this case, the additional flag -ipo_obj is not needed.

$./configure CC=icc CFLAGS=’-O3 -ipo’
$ make AR=xiar LD=xild

See the manual of Intel C++ Compiler for more information.

Chapter 3: Invoking drops 5

3 Invoking drops

The format for running the drops program is:
$ drops option ... input

input is the input file for drops. If no input file is specified, drops will read the default
input file dropsin.lua.

drops supports the following options:

--input=input
-i input Read the parameters for simulation from the input file input. If no input file is

specified, drops will read the input file named dropsin.lua.

--psi=psi
-p psi Read the initial value of the psi-field (square root of the density) from the

file psi. The psi-field input file psi must be the gzipped plain text. You can
create one easily by using gzip. By default, drops set the density field to be
homogeneous.

--external=external
-e external

Read the external force field from the file external. The external force input
file density must be the gzipped plain text. You can create one easily by using
gzip. By default, drops does not apply any external force to the system.

--help
-h Show summary of options.

--version
-v Show version of program.

6 drops

Chapter 4: Tutorial 7

4 Tutorial

4.1 Simple Example

Here are a simple examples how to use drops (the input file and some scripts for plotting /
visualization can be found in the directory examples/). But first of all, you have to install
the drops to your system. If drops is not installed to your system, see the ‘Install drops’
section. We starts from the simplest block copolymer systems, the diblock copolymer melts.
The input file is distributed with the source code or binary of drops. To run this example,
move to the directory examples/ab_melt_1d/ and just type drops

$ drops

drops will output some information about the simulation, and starts the simulation.
The simulation will end in several seconds. You can find some output files.

4.2 Plot or Visualize Output Data

The output file of drops is gzipped plain text and the OpenDX (http://www.opendx.org/)
data format. If you have OpenDX, you can visualize it directly. The gzipped plain text
is more portable and can be handled by most of the plotting / visualizing applications.
For example, here we plot the output data of the previous simulation by using Gnuplot
(http://www.gnuplot.info/). For Gnuplot cannot handle the gzipped text directly, we
have to decompress it. There are two way to do it. The first way is to use gunzip and then
plot the decompressed data.

$ gunzip phi.dat.gz
$ gnuplot
gnuplot> plot "phi.dat" using 1:2 with lines

This will show the density profile of the ‘A’ subchain. The second way is to use zcat.
$ gnuplot
gnuplot> plot "< zcat phi.dat.gz" using 1:2 with lines

The result is just the same as the first way.

4.3 Changing Input File

The input file is the Lua script which sets the parameters needed for the DF simulation.
The following is the input file used in the previous section.

condition =
{

optimize_lattice = false,

use_multigrid_solver = false,

dynamics_simulation = false,

save_psi_sequential = false,
save_density_sequential = false,
save_chemical_potential_sequential = false,

http://www.opendx.org/
http://www.gnuplot.info/

8 drops

save_free_energy_sequential = false,
save_geometry_sequential = false,
save_dx_sequential = false,

error_tolerance = 1.0e-12,
seed = 19876,
noise = 0.0e-2,
initial_noise = 1.0e-3,

phi_min = -1.0,

iteration_max = 5000,
interval = 500,
omega = 0.1,

}

file =
{

wisdom = "fftw.wisdom",

psi_output = "psi.dat.gz",
density_output = "phi.dat.gz",
chemical_potential_output = "mu.dat.gz",
free_energy_output = "fe.dat",
geometry_output = "geometry.dat",
dx_output = "dropsout.dx",

psi_template = "psi.%d.dat.gz",
density_template = "phi.%d.dat.gz",
chemical_potential_template = "mu.%d.dat.gz",
free_energy_template = "fe.%d.dat",
geometry_template = "geometry.%d.dat",
dx_template = "ppoutput.%d.dx"

}

multigrid =
{

n_cycle = 10,
n_pre = 5,
n_post = 5,
error_tolerance = 1.0e-4

}

geometry =
{

dimension = 1,

Chapter 4: Tutorial 9

nx = 256,
ny = 1,
nz = 1,

lx = 32,
ly = 1,
lz = 1

}

blend =
{

polymer = {"AB_diblock"},
volume_fraction = {1}

}

monomer =
{

name = {"A", "B"},
b = {1, 1},
chi = {{0, 3.0},

{0, 0 }}
}

AB_diblock =
{

N = 40,
f = {0.5, 0.5},
a = {{false, true },

{false, false}},
monomer = {"A", "B"},
lambda = 20

}

There are many parameters required by drops. The detail of the input file will be
expressed in the section ‘Input File Format’.

Here we modify this input file simply. The first example is to change the size and
dimension(s) of the simulations box. This can be done by changing the geometry in the
input file. Change the geometry in the input file as follows.

geometry =
{

dimension = 2,

nx = 32,
ny = 32,
nz = 1,

lx = 16,

10 drops

ly = 16,
lz = 1

}

dimension means the dimension(s) of the system. nx,ny,nz and lx,ly,lz mean the
number of division and edge length for x, y, z axis. Thus the parameters shown above mean
the 2 dimensional system with each edge length is 16 and divided into 32.

The second example is to change the polymers used in the simulation. This needs more
complicated changes. The change will be as follows.

blend =
{

polymer = {"A_homo", "B_homo"},
volume_fraction = {0.5, 0.5}

}

A_homo =
{

N = 10,
f = {1},
a = {{false}},
monomer = {"A"},
lambda = 0

}

B_homo =
{

N = 10,
f = {1},
a = {{false}},
monomer = {"B"},
lambda = 0

}

The blend is changed to simulate the blend of A homopolymer / B homopolymer. The
polymer species which the blend is consists on is listed in polymer. The volume fractions
of each polymer species are specified by volume_fraction. The A homopolymer A_homo
and the B homopolymer B_homo is defined as well (the AB_diblock is no longer needed and
can be deleted because now it is not used). N is the degree of polymerization, f is the block
ratio, a is the adjacency matrix for subchains and monomer is the monomer species.

4.4 Notes on Input File

4.4.1 Boolean Variables

There are many boolean variables (of which value is true or false) in the input file for
drops. However it may seem verbous to write many boolean values (especially for large
adjacency matrices). In such situations one can use 1 and 0 instead of true and false.
drops automatically converts 1 and 0 into boolean values, true and false, for the boolean

Chapter 4: Tutorial 11

variables. (Strictly speaking, number value 0 corresponds to false and non-zero numbers,
including 1, correspond to true. This is just the same as the standard C mannar.)

4.4.2 Symmetric Matrices

Adjacency matrices and Flory-Huggins chi parameter matrices are symmteric. Thus we
don’t need to set all the elements in these matrices. In the input file for drops, adjacency
matrices are required to set their upper triangular part and chi parameter matrices are
required to set their diagonal and uppser triangular part. drops automatically fill the lower
critical part by copying the values of upper triangular elements. (See examples in previous
sections.)

12 drops

Chapter 5: Reporting Bugs 13

5 Reporting Bugs

Currently, the error handling routines in drops is not complete and therefore drops may
suddenly stops if some input error or calculation error is caused.

If you find a bug in drops, please send electronic mail to uneyama@ton.scphys.kyoto-u.ac.jp.
Include the version number, which you can find by running drops --version. Also include
in your message the output that the program produced and the output you expected.

If you have other questions, comments or suggestions about drops, contact the author
via electronic mail to uneyama@ton.scphys.kyoto-u.ac.jp. The author will try to help
you out, although he may not have time to fix your problems.

mailto:uneyama@ton.scphys.kyoto-u.ac.jp
mailto:uneyama@ton.scphys.kyoto-u.ac.jp

14 drops

Chapter 6: Input File Format 15

6 Input File Format

In this section, the input file format for drops is expressed. The input file is the Lua script
which sets the parameters. The parameters are set as the table variables.

6.1 Simulation Condition

The simulation condition will be set as the table condition. The following elements are
required.

condition.optimize_lattice
(boolean or number)

Whether to perform the lattice optimization or not. If condition.optimize_
lattice is set to true, drops automatically modify the size of the system
lx,ly,lz to minimize the free energy.

condition.use_multigrid_solver
(bollean or number)

Whether to use the multigrid solver for Poisson equation or not. If
condition.use_multigrid_solver is set to true, drops uses the multigrid
Poisson equation. If it is set to false, the fast solver using FFT is used.

condition.dynamics_simulation
(bollean or number)

Whether to perform the dynamics simulation or not. If condition.dynamics_
simulation is set to true, drops performs the dynamics simulation. If it is set
to false, it performs the statics (equilibrium) simulation.

condition.save_psi_sequential
(boolean or number)

Whether to save the psi-field sequentially or not. If condition.save_psi_
sequential is set to true, drops saves the psi-field every condition.interval
steps. The output file name is generated from file.psi_template. If it is set to
false, drops saves psi-field to the output file named file.psi_output every
condition.interval steps (in other words, the output file is overwritten).
This behavior is the same for other output files (the chemical potential field,
the density field, the free energy, the geometry and the DX output).

condition.save_density_sequential
(boolean or number)

Whether to save the chemical potential field sequentially or not. See
condition.save_psi_sequential for detail.

condition.save_chemical_potential_sequential
(boolean or number)

Whether to save the density field sequentially or not. See condition.save_
psi_sequential for detail.

condition.save_free_energy_sequential
(boolean or number)

16 drops

Whether to save the free energy sequentially or not. See condition.save_psi_
sequential for detail.

condition.save_geometry_sequential
(boolean or number)
Whether to save the geometry field sequentially or not. See condition.save_
psi_sequential for detail.

condition.save_dx_sequential
(boolean or number)
Whether to save the DX output sequentially or not. See condition.save_psi_
sequential for detail.

condition.error_tolerance
(number)
Allowed error for the free energy. drops stops the simulation if the absolute
value of the difference of the free energy is smaller than condition.error_
tolerance.

condition.seed
(number)
Seed for the Mersenne twister random number generator.

condition.noise
(number)
Magnification of the random noise added to the chemical potential field. Set to
0 if you do not want to apply any random force.

condition.initial_noise
(number)
Magnification of the random noise added to the density field at the beginning
of the simulations. Set to 0 if you do not want to add any random noise to the
field.

condition.phi_min
(number)
Allower minimum value of the density field for dynamics simulations. If the
value of the density, phi, is lower than condition.phi_min, drops automat-
ically correct the density field. If condition.phi_min is positive value, the
density correction is not performed. This parameter is only for dynamics sim-
ulations, and not used in the statics simulations.

condition.iteration_max
(number)
Maximum number of iterations for the simulation. drops ends the simulation
if the number of iterations reaches condition.iteration_max.

condition.interval
(number)
Interval for the lattice optimization, file output or calculating the difference of
the free energy.

condition.omega
(number)

Chapter 6: Input File Format 17

Acceleration factor for the density evolution. Too large condition.omega
causes numerical instability associated with the employed numerical scheme.

6.2 Input / Output Files

The input / output file names are set as the file table.

file.wisdom
(string)
FFTW wisdom file used by the FFTW library. If the file named file.wisdom
exists already, FFTW reads the wisdom from it. If the file does not exist FFTW
saves its wisdom to the file which can be used for latter simulations.

file.psi_output
(string)
Output file name for the psi-field. This is used when condition.save_psi_
sequential is set to false. If the file.psi_output is set to the null string
(""), no output file will be created. It is the same for for other output files (the
chemical potential field, the density field, the free energy, the geometry and the
DX output).

file.density_output
(string)
Output file name for the density field.

file.chemical_potential_output
(string)
Output file name for the chemical potential field.

file.free_energy_output
(string)
Output file name for the free energy.

file.geometry_output
(string)
Output file name for the geometry.

file.dx_output
(string)
Output file name for the DX output file.

file.psi_template
(string)
Template for the output file of the psi-field. file.psi_template must contains
%d once. %d will be replaced by the sequential number 1,2,3,... If file.psi_
template is set to the null string (""), no output file is created.

file.density_template
(string)
Template for the output file of the density field.

file.chemical_potential_template
(string)

18 drops

Template for the output file of the chemical potential field.
file.free_energy_template

(string)
Template for the output file of the free energy.

file.geometry_template
(string)
Template for the output file of the geometry.

file.dx_template
(string)
Template for the output file of the DX output file.

6.3 Multigrid Solver

The input / output file names are set as the multigrid table. The multigrid solver is not
used if condition.use_multigird_solver is set to false.

multigrid.n_cycle
(number)
Number of iteration for multigrid V-cycle.

multigrid.n_pre
(number)
Number of iteration for pre-smoothing Gauss-Seidel method.

multigrid.n_post
(number)
Number of iteration for post-smoothing Gauss-Seidel method.

multigrid.error_tolerance
(number)
Allowed error for the Poisson equation. The multigrid solver stops relaxation
if the mean square residual is less than multigrid.error_tolerance.

6.4 Geometry of Simulation Box

6.5 geometry

The input / output file names are set as the geometry table.

geometry.dimension
(number)
Number of dimension(s). This must be set to 1,2 or 3.

geometry.nx
(number)
Number of division in x-direction.

geometry.ny
(number)

Chapter 6: Input File Format 19

Number of division in y-direction (not used for 1 dimensional systems).

geometry.nz
(number)

Number of division in z-direction (not used for 1, 2 dimensional systems).

geometry.lx
(number)

Length of the edge of the simulation box in x-direction.

geometry.ly
(number)

Length of the edge of the simulation box in x-direction (not used for 1 dimen-
sional systems).

geometry.lz
(number)

Length of the edge of the simulation box in x-direction (not used for 1,2 dimen-
sional systems).

6.6 Polymer Blend

The information about the polymer blend is set as the blend table. The polymers which is
contained in the system is set as the individual tables.

blend.polymer
(array of strings)

Polymers which is contained in the blend. The polymers used here must be
defined as individual tables.

blend.volume_fraction
(array of numbers)

Volume fraction of each polymers (drops automatically normalize
blend.volume_fraction).

6.7 Monomer Species

The information about monomers is set as the monomer table.

monomer.name
(array of strings)

Names for each monomers.

monomer.b
(array of numbers)

Kuhn length (effective segment size) for each monomers.

monomer.chi
(array of array of numbers)

Flory-Huggins chi parameters for monomers. Only the diagonal and upper
triangular part are used.

20 drops

6.8 Polymer Species

The polymers which is used in blend.polymer is defined as individual tables of which
name is same as the element of blend.polymer. For example, if blend.polymer is set to
{AB_diblock, C_homo} the tables AB_diblock and C_homo must be defined.

polymer.N
(number)
Polymerization index of the polymer.

polymer.f
(array of numbers)
Block ratio for each subchains (drops automatically normalize polymer.f).

polymer.a
(array of array of booleans or numbers)
Adjacency matrix. polymer.a specifies the topology of the polymer (connec-
tivity of subchains). Only the upper triangular part is used.

polymer.monomer
(array of numbers)
Monomers for each subchains.

polymer.lambda
Tang-Freed type cutoff length for the long range interaction. If polymer.lambda
is negative or 0, cutoff length is set to infinity (no cutoff length).

6.9 How to Determine the Adjacency Matricies

Most of the input parameters are easy to understand. The most confusing parameters are
the adjacency matrix polymer.a which represents the connectivity of subchains. Here we
show how to determine the adjacency matricies for block copolymers.

(a) (b) (c)

(d) (e) (f)

1

1

2 3 2

1

1

2

3

1

2

3

4

5

6

7

1

2

3

4

5

6

The above figure shows some polymer species; (a) homopolymer, (b) diblock copolymer,
(c) triblock linear copolymer, (d) triblock star copolymer, (e) comb copolymer, (f) copoly-
mer with complicated structure. The numbers (1,2,...) shown in figure corresponds to
the index of the subchains.

The adjacency matricies for these polymer species are determined as follows.

Chapter 6: Input File Format 21

(a) homopolymer
The homopolymer has only one subchain. Since there are no non-diagonal
elements, the adjacency matrix has no meaning (but it must be specified, or
drops won’t work).

homopolymer.a = {0}

(b) diblock copolymer
This is the simplest block copolymer except for the homopolymer. Subchain 1
and subchain 2 are connected, so a[1][2] = 1.

diblock.a = {{0, 1},
{1, 0}}

Note that we can use true and false instead of 1 and 0. Also note that the
diagonal term and lower triangular part of the matrix are actually not used.

(c) triblock linear copolymer
The triblock linear copolymer and the triblock star copolymer (d) are good
example for determining adjecency matrices. For linear copolymer, Subhain 1
is connected to subchain 2, but not connected to subchain 3. Subchain 2 is
connected to subchain 3. Thus a[1][2] = 1, a[1][3] = 0, a[2][3] = 1.

triblock_linear.a = {{0, 1, 0},
{1, 0, 0},
{0, 1, 0}}

(d) triblock star copolymer
The triblock star copolymer contains three subchains, but the connectivity is
different from the triblock linear copolymer (c). In this case, all subchains are
connected each other. a[1][2] = a[1][3] = a[2][3] = 1.

triblock_star.a = {{0, 1, 1},
{1, 0, 1},
{1, 1, 0}}

(e) comb copolymer
Here we consider the comb copolymer which contains seven subchains. Al-
though it may look complicated, but determining the adjecency matrix is not
so complicated. First, the backbone subchains 1,3,5,7 is connected just like
the linear copolymer. Thus a[1][3] = a[3][5] = a[5][7] = 1. Next, each side
subchains 2,4,6 is connected to two backbone subchains. a[1][2] = a[3][2]
= 1, a[3][4] = a[5][4] = 1, a[5][6] = a[5][7] = 1. Any other elements are
equal to 0. Finally a is expressed as

comb.a = {{0, 1, 1, 0, 0, 0, 0},
{1, 0, 1, 0, 0, 0, 0},
{1, 1, 0, 1, 1, 0, 0},
{0, 0, 1, 0, 1, 0, 0},
{0, 0, 1, 1, 0, 1, 1},
{0, 0, 0, 0, 1, 0, 1},
{0, 0, 0, 0, 1, 1, 0}}

22 drops

(f) general block copolymer (with complicated structure)
As a final example, here we show the general block copolymer with complicated
structure. This block copolymer has 6 subchians. We start from the subchain
1. It is connected to subchain 2, so a[1][2] = 1. Subchain 2 is connected
subchains 3 and 4 (of course it is connected to 1, but we already know it).
a[2][3] = a[2][4] = 1. Subchain 3 is connected to subchain 4. a[3][4] =
1. Subchain 4 is connected to subchains 5 and 6. a[4][5] = a[5][6] = 1.
Subchain 5 is connected to subchain 6. Thus we scanned all the connectivity.
Now the adjacency matrix is

general.a = {{0, 1, 0, 0, 0, 0},
{1, 0, 1, 1, 0, 0},
{0, 1, 0, 1, 0, 0},
{0, 1, 1, 0, 1, 1},
{0, 0, 0, 1, 0, 1},
{0, 0, 0, 1, 1, 0}}

Chapter 7: Output File Format 23

7 Output File Format

In this section, the output file format for drops is described.

7.1 Psi-Field

The output file for the psi-field is gzipped text. Each low corresponds to the one lattice
point and each column corresponds to the subchain. For example, if blend.polymer is set
to {AB_diblock, C_homo} and AB_diblock.monomer is set to {"A","B"}, The output data
is like the following data (the output file itself is gzipped).

0.0241512 0.29688 0.954609
0.0240064 0.291801 0.956178
0.0238619 0.286763 0.957704
0.0237176 0.281766 0.95919
0.0235735 0.276813 0.960634
0.0234294 0.271903 0.962039
0.0232853 0.267038 0.963404
0.0231412 0.262219 0.964731

: : :

The first and second column correspond to the psi-field of A subchain and B subchain
of AB diblock copolymer, The third column corresponds to one of C homopolymer. You
can deflate the output file by using gunzip or zcat.

7.2 Density Field

The output file for the density field is gzipped text. The format is like the psi-field output
file, but contains position data. The first column (and the second, third column(s) if the
dimensions of the system is greater than 1) is the position.

0 0.000583278 0.0881376 0.911279
0.03125 0.000576307 0.0851477 0.914276
0.0625 0.000569391 0.0822328 0.917197
0.09375 0.000562526 0.0793923 0.920045
0.125 0.000555708 0.0766254 0.922819
0.15625 0.000548935 0.0739314 0.925519
0.1875 0.000542204 0.0713094 0.928148
0.21875 0.000535514 0.0687586 0.930705

: : : :

It is convenient to use gnuplot to plot the 1D or 2D density data. For example, to plot
1D data, gnuplot command will be

gnuplot> plot "< zcat phi.dat.gz" using 1:2 title "A" with lines, \
using 1:3 title "B" with lines, \
using 1:4 title "C" with lines

and to plot 2D data, the command will be
gnuplot> splot "< zcat phi.dat.gz" using 1:2:3 title "A" with lines, \

using 1:2:4 title "B" with lines, \
using 1:2:5 title "C" with lines

24 drops

7.3 Chemical Potential Field

The output file for the chemical potential field is gzipped text. The data format is same as
the density output file.

7.4 Free Energy

The output file for the free energy is text file. The total free energy, the long range term,
the local term, the gradient term are stored in this order. The sample output file is as
follows.

-0.0925369 0.00859006 -0.13708 0.0359527

7.5 Geometry

The output file for the geometry is text file. The first row describes dimension(s) of the sys-
tem, the second row describes number(s) of division and the third row describes length(es)
of the edge of the simulation box. The sample output file is as follows.

1
1024
32

7.6 DX Output File

The DX output file is the data format for OpenDX (visualization software). It contains
the density field (phi0,phi1,. . .) and the chemical potential field (mu0,mu1,. . .). You
can visualize it by using OpenDX. The sample OpenDX program to visualize the OpenDX
format drops output data will be found in the example/ directory.

Chapter 8: References 25

8 References

[Bates-Fredrickson-1999] F. S. Bates and G. H. Fredrickson, Phys. Today 52, 32 (1999).
[Bohbot-Raviv-Wang-2000] Y. Bohbot-Raviv and Z.-G. Wang, Phys. Rev. Lett. 85,
3428 (2000).
[Choucair-Eisenberg-2003] A. Choucair and A. Eisenberg, Eur. Phys. J. E 10, 37
(2003).
[Disher-Eisenberg-2002] D. E. Disher and A. Eisenberg, Science 297, 967 (2002).
[Drolet-Fredrickson-1999] F. Drolet and G. H. Fredrickson, Phys. Rev. Lett. 83, 4381
(1999).
[Fraaije-1993] J. G. E. M. Fraaije, J. Chem. Phys. 99, 9202 (1993).
[Fredrickson-Ganesan-Drolet-2002] G. H. Fredrickson, V. Ganesan and F. Drollet,
Macromolecules 35, 16 (2002).
[Groot-Madden-1998] R. D. Groot and T. J. Madden, J. Chem. Phys. 108, 8713 (1998).
[Groot-Madden-Tildesley-1999] R. D. Groot, T. J. Madden and D. J. Tildesley, J.
Chem. Phys 110, 9739 (1999).
[Groot-Warren-1997] R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).
[Helfand-Wasserman-1976] E. Helfand and Z. R. Wasserman, Macromolecules 9, 879
(1976).
[Helfand-Wasserman-1978] E. Helfand and Z. R. Wasserman, Macromolecules 11, 960
(1978).
[Helfand-Wasserman-1980] E. Helfand and Z. R. Wasserman, Macromolecules 13, 879
(1980).
[Joanny-Leibler-1978] J. F. Joanny and L. Leibler, J. Phys. (Paris). 39, 951 (1978).
[Kawakatsu-1994] T. Kawakatsu, Phys. Rev. E 50, 2856 (1994).
[Kawasaki-Ohta-Kohrogui-1988] K. Kawasaki, T. Ohta and M. Kohrogui,
Macromolecules 21, 2972 (1988).
[Koizumi-Hasegawa-Hashimoto-1994] S. Koizumi, H. Hasegawa and T. Hashimoto,
Macromolecules 27, 6532 (1994).
[Leibler-1980] L. Leibler, Macromolecules 13, 1602 (1980).
[Matsen-Bates-1996] M. W. Matsen and F. S. Bates, Macromolecules 29, 1091 (1995).
[Matsen-Schick-1994] M. W. Matsen and M. Schick, Phys. Rev. Lett. 72, 2660 (1994).
[Nakazawa-Ohta-1993] H. Nakazawa and T. Ohta, Macromolecules 26, 5503 (1993).
[Ohta-Ito-1995] T. Ohta and A. Ito, Phys. Rev. E 52, 5250 (1995).
[Ohta-Kawasaki-1986] T. Ohta and K. Kawasaki, Macromolecules 19, 2621 (1986).
[Ohta-Kawasaki-1990] T. Ohta and K. Kawasaki, Macromolecules 23, 2413 (1990).
[Uneyama-Doi-2005] T. Uneyama and M. Doi, Macromolecules 38, 196 (2005).
[Uneyama-Doi-2005a] T. Uneyama and M. Doi, Macromolecules 38, 5817 (2005).
[Uneyama-2007] T. Uneyama, J. Chem. Phys. 126, 114902 (2007).
[de Gennes-1980] P. G. de Gennes, J. Chem. Phys. 72, 4756 (1980).

26 drops

[Introduction to Polymer Physics] M. Doi, Introduction to Polymer Physics, Clarendon
Press (1996).
[Scaling Concepts in Polymer Physics] P. G. de Gennes, Scaling Concepts in Polymer
Physics, Cornell University Press (1979).
[Statistical Physics of Polymers: An Introduction] T. Kawakatsu, Statistical Physics of
Polymers : An Introduction, Springer Verlag (2004).

Chapter 8: GNU GENERAL PUBLIC LICENSE 27

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

28 drops

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Chapter 8: GNU GENERAL PUBLIC LICENSE 29

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

30 drops

7. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software

Chapter 8: GNU GENERAL PUBLIC LICENSE 31

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

32 drops

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Chapter 8: Concept Index 33

34 drops

Concept Index

A
adjacency . 20

B
block copolymer . 1, 20
bugs . 13

C
chemical potential . 24
chemical potential field . 24
connectivity . 20

D
density field . 23
download . 3

E
example . 7

F
FFTW . 3
format . 15, 23
free energy . 24

G
geometry . 24
getting help . 5
Gnuplot . 7
GPL . 27

H
help . 5

I
icc . 4
input . 15
input / output files . 17
install . 3
Installer . 3
Intel C++ Compiler . 4
introduction . 1
invoking . 5

L
license . 27
Lua . 3

M
microphase separation . 1
monomer . 19
multigrid solver . 18

O
OpenDX . 7, 24
options. 5
output . 23

P
plot . 7
polymer . 20
polymer blend . 19
problems . 13
psi-field . 23

R
references . 25
RPM . 4

S
simulation condition . 15
source . 3
SRPM . 4

T
tutorial . 7

U
usage . 5

V
version . 5
visualization . 7

W
Windows . 3

Z
zlib . 3

	Introduction
	Installation of drops
	To Download the Latest Version of drops
	Install to Microsoft Windows by the Installer
	Build and Install from the source
	Build and Install as the RPM package (for Linux)
	Compilation with Intel C++ Compiler (icc)

	Invoking drops
	Tutorial
	Simple Example
	Plot or Visualize Output Data
	Changing Input File
	Notes on Input File
	Boolean Variables
	Symmetric Matrices

	Reporting Bugs
	Input File Format
	Simulation Condition
	Input / Output Files
	Multigrid Solver
	Geometry of Simulation Box
	geometry
	Polymer Blend
	Monomer Species
	Polymer Species
	How to Determine the Adjacency Matricies

	Output File Format
	Psi-Field
	Density Field
	Chemical Potential Field
	Free Energy
	Geometry
	DX Output File

	References
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	Concept Index

